lunes, 20 de octubre de 2008

Trabajo Placa Base

La placa-base
Por: Salvador Garrido de la Parra-1º A.S.I

Presentación
En la arquitectura PC, el núcleo del sistema está integrado en una sola placa, denominada placa-base ("Motherboard" o "Mainboard"). En los sistemas actuales de sobremesa, es una placa de circuito impreso multicapa de unos 600 cm2 en la que se incluyen elementos de montaje superficial (soldados), amén de zócalos y conectores para diversos elementos desmontables. Existen diversos tamaños y disposiciones... La imagen muestra la placa-base de un equipo de sobremesa, mostrando sus principales elementos.



Representación esquemática de una placa-base.

Componentes

A grandes rasgos, los componentes principales de la placa base son los que se han esquematizado en la figura adjunta • BIOS • Bus externo. • Procesador (UCP). • Chipset. Northbridge y Southbridge) Juego de chips auxiliares. • Memoria. • Conectores de E/S, incluyendo alimentación • Otros: Socket, Zócalo de memoria …

  1. BIOS
Las siglas BIOS corresponden a (Sistema de entrada/salida básico (Basic Input Output System, en inglés). Es una memoria ROM, EPROM o FLASH la cual contiene las rutinas de más bajo nivel, haciendo posible que el ordenador pueda arrancar, controlando el teclado, el disco y la disquetera, permitiendo pasar el control al sistema operativo. Además, la BIOS se apoya en otra memoria, la CMOS (llamada así porque suele estar hecha con esta tecnología), que almacena todos los datos propios de la configuración del ordenador, como pueden ser los discos duros que tenemos instalados, número de cabezas, cilindros, número y tipo de disqueteras, la fecha, hora,…, así como otros parámetros necesarios para el correcto funcionamiento del ordenador. Además, la BIOS contiene el programa de configuración, es decir, los menús y pantallas que aparecen cuando accedemos a los parámetros del sistema. Hay muchos tipos de BIOS y podemos encontrar de diferentes números de pins (24, 28, 32). La placa incorpora una BIOS en memoria flash PnP de última generación que soporta características avanzadas  Reloj / OSCILADOR El microprocesador está conectado a un oscilador que genera impulsos (señales eléctricas) a intervalos constantes de tiempo, y que se suele conocer como reloj. Estos impulsos forman una señal, que permite regular los instantes exactos en los que debe comenzar y finalizar el trabajo de un componente. Esta será emitida a una determinada frecuencia base. La frecuencia se mide en megahercios (MHz o millones de ciclos por segundo). El microprocesador recibe dicha señal y la divide para obtener otra señal con la frecuencia a la que el microprocesador es capaz de trabajar. Esta nueva señal marca el ritmo con el cual se ejecutan todas las tareas. Por ejemplo, el 8088 funciona a 4,77 MHz, que es un tercio de la frecuencia base del reloj que usa, que es de 14,31818 MHz Los más modernos microprocesadores alcanzan velocidades de cientos de MHz.

2.JUMPERS (PUENTES)

Son unos puentes que sirven, entre otras cosas, para configurar la velocidad de microprocesador, al igual que la de otros componentes de la placa base. Están formados por simples piececitas de plástico que “puentean” o unen varias patillas de un conector. La configuración para dichos jumpers viene reflejada en el manual de la placa base. Jumpers

3.CONECTOR DE ALIMENTACIÓN

Sirve para que la fuente de alimentación pueda suministrar energía a la placa base, y de ahí, a todos los demás componentes de nuestro ordenador.
4. CHIPSET

El Chipset de la placa base es la pieza fundamental a la hora de definir las características de un sistema. Los chipset son un conjunto de chips que actúan de interconexión entre el microprocesador y el resto de los elementos y da nombre a la placa base. Estos circuitos ayudan al microprocesador a acceder a la memoria, slots de expansión, discos... Su función principal es de servir como medio de comunicación entre el microprocesador y el resto de componentes de la placa base. Estos chips vienen soldados a la placa base. En el mercado hay distintas marcas de fabricantes de Chipset, pero el principal fabricante es Intel. Existe una amplia gama de chipset para cada tipo de micro y de bus.

5.ZÓCALO

El zócalo para el microprocesador es la ubicación situada en la placa base para fijar a este, es decir, es el lugar donde se inserta el "cerebro" del ordenador. Durante más de 10 años consistió en un rectángulo o cuadrado donde el "micro", una pastilla de plástico negro con patitas, se introducía con mayor o menor facilidad; la aparición de los Pentium II cambió un poco este panorama, introduciendo los conectores en forma de ranura (slot). Veamos en detalle los tipos más comunes de zócalo, o socket, como dicen los anglosajones:
PGA: son el modelo clásico, usado en el 386 y muchos 486; consiste en un cuadrado de conectores en forma de agujero donde se insertan las patitas del chip por pura presión. Según el chip, tiene más o menos agujeritos.

ZIF: Zero Insertion Force (socket), es decir, zócalo de fuerza de inserción nula. El gran avance que relajó la vida de los manazas aficionados a la ampliación de ordenadores. Eléctricamente es como un PGA, aunque gracias a un sistema mecánico permite introducir el micro sin necesidad de fuerza alguna, con lo que el peligro de cargarnos el chip por romperle una patita desaparece. Apareció en la época del 486 y sus distintas versiones (sockets 3, 5 y 7, principalmente) se han utilizado hasta que apareció el Pentium II. Actualmente se fabrican los siguientes tipos de zócalos ZIF: o Socket 7 "Súper 7": variante del Socket 7 que se caracteriza por poder usar velocidades de bus de hasta 100 MHz, es el que utilizan los micros AMD K6-2. o Socket 370 o PGA370: físicamente similar al anterior, pero incompatible con él por utilizar un bus distinto. Dos versiones: PPGA (la más antigua, sólo para micros Intel Celeron Mendocino) y FC-PGA (para Celeron y los más recientes Pentium III). o Socket A (462): utilizado únicamente por los más recientes AMD K7 Athlon y por los AMD Duron. o Socket 423: utilizado únicamente por los Pentium 4.

Slot 1: la manzana de la discordia, o cómo quedarse el mercado convirtiendo una arquitectura abierta en un diseño propietario. Fue un invento de Intel para enchufar los Pentium II, o más bien para desenchufar a su competencia, AMD y Cyrix. Físicamente, no se parece a nada de lo anterior; en vez de un rectángulo con agujeritos para las patitas del chip, es una ranura (slot), una especie de conector alargado como los ISA o PCI. Técnicamente, y por mucho que diga Intel, no tiene muchas ventajas frente a los ZIF (e incluso puede que al estar los conectores en forma de "peine" den lugar a más interferencias), aunque tiene una irreprochable: es 100% Intel, TM, Copyright. Es más, pensaban no licenciarlo a nadie, en un claro intento de convertirse en la única empresa que controla la arquitectura PC (léase monopolio), algo que esperemos no consigan nunca, por el bien de nuestros bolsillos; sería tan absurdo como tener un aparato electrónico muy bueno y no poder usarlo porque el enchufe es redondo en vez de cuadrado. Y eso que la verdad es que el Pentium II es todo un invento, pero el Slot 1 no lo es; es un truquito sumamente desagradable... ¡Parece una idea de Bill Gates! Slot A: la respuesta de AMD al Slot 1; físicamente ambos "slots" son idénticos, pero lógica y eléctricamente son totalmente incompatibles por los motivos indicados antes. Utilizado únicamente por los primeros AMD K7 Athlon. Otros: en ocasiones, no existe zócalo en absoluto, sino que el chip está soldado a la placa, en cuyo caso a veces resulta hasta difícil de reconocer. Es el caso de muchos 8086, 286 y 386SX. O bien se trata de chips antiguos (esos 8086 o 286), que tienen forma rectangular alargada (parecida a la del chip de BIOS) y patitas planas en vez de redondas; en este caso, el zócalo es asimismo rectangular, del modelo que se usa para multitud de chips electrónicos de todo tipo.



Lista de algunos sockets
Socket 939 (AMD) • Socket AM2 (AMD) • Socket 478 (Intel) • Socket 775 (Intel) • Socket 771 (Intel - Servidores) • Socket 940 (AMD - Servidores) • Socket F (AMD - Servidores

6.MICROPROCESADOR

El microprocesador, o simplemente el micro, es el cerebro del ordenador. Es un chip, un tipo de componente electrónico en cuyo interior existen miles (o millones) de elementos llamados transistores, cuya combinación permite realizar el trabajo que tenga encomendado el chip, estos suelen tener forma de cuadrado o rectángulo negro, y como se ha dicho anteriormente, va en su zócalo correspondiente según el modelo del microprocesador o soldados en la placa base. La velocidad del micro se mide en megahercios (MHz) aunque esto es solo una medida de la fuerza bruta del micro. Debido a la dificultad de fabricar componentes electrónicos que funciones a inmensas velocidades a megahercios es muy complejo, todos los micros tienen dos velocidades: • Velocidad interna: la velocidad a la que funciona el micro internamente (300, 450, 500 MHz...) • Velocidad externa o de bus: o también “FBS”, la velocidad con la que se comunica el micro y la placa base. La cifra por la que se multiplica la velocidad externa o de la placa para dar la interna o del micro es el multiplicador; por ejemplo, un Pentium III a 450 MHz utiliza una velocidad de bus de 100 MHz y un multiplicador 4,5x. Partes de un microprocesador
El encapsulado: es el plástico que rodea a la oblea de silicio en sí, para protegerla para que no se deteriore y permitir el enlace con los componentes externos que lo acoplarán a su zócalo. La memoria caché: una memoria ultrarrápida que sirve al micro para tener a mano ciertos datos que previsiblemente serán utilizados en las siguientes operaciones sin tener que acudir a la memoria RAM, reduciendo el tiempo de espera. Es lo que se conoce como caché de primer nivel; es decir, la que está más cerca del micro, tanto que está encapsulada junto a él. Todos los micros tipo Intel desde el 486 tienen esta memoria, también llamada caché interna. El coprocesador matemático: o, más correctamente, la FPU (Floating Point Unit, Unidad de coma Flotante). Parte del micro especializada en esa clase de cálculos matemáticos; también puede estar en el exterior del micro, en otro chip.

7.ZÓCALOS DE MEMORIA

Como su propio nombre indica, son como los slots de expansión a las tarjetas controladoras. Los módulos de memoria se insertan en estas ranuras para quedar conectados a la placa base.

8. MEMORIAS

RAM (Random Acces Memory, memoria de acceso aleatorio):

Memoria de almacenamiento primario. Almacena temporalmente instrucciones de programa y datos. El computador divide un chip de RAM en varias localidades de igual tamaño. Estas localidades de memoria tienen una dirección única, de manera que el computador pueda distinguirlas cuando se le ordena que guarde o recupere información. Puede almacenarse un trozo de información en cualquier localidad de la RAM tomada al azar y el computador puede recuperarlo rápidamente si se le indica hacerlo. De ahí proviene el nombre de memoria de acceso aleatorio. La información almacenada en la RAM no es más que un patrón de corriente eléctrica que fluye por circuitos microscópicos en chips de silicio. Es una memoria volátil, ya que la información que contiene no se conserva de manera permanente. Si se interrumpe la energía, dicha información se pierde. La RAM no tiene partes móviles; al no tener un movimiento mecánico, se puede tener acceso a los datos de la RAM a velocidades electrónicas o aproximadamente a la velocidad de la luz. La RAM ofrece al procesador un almacenamiento temporal para programas y datos. Todos los programas y datos se deben transferir a la RAM desde un dispositivo de entrada o del almacenamiento secundario antes de que se puedan ejecutar los programas o procesar los datos. El Espacio de la RAM es siempre escaso, por eso, después de que se haya ejecutado un programa, se libera.

Tipos básicos de módulos de memoria:

La DRAM en general no se compra en CHIPS, sino en módulos de memoria empaquetados en dos formatos básicos SIMM y DIMM que contienen 8, 16, 32, 64 o 128 MB cada uno. Estos módulos se introducen es ranuras (slots) en la placa base.

Memoria SIMM (Single in line Memory Module)

Usualmente son ocho o nueve, chips DIP fabricados con tecnología DRAM y soldados en una tarjeta pequeña de circuito impreso. El borde inferior de esta tarjeta posee contactos, que encajan perfectamente en zócalos (slots) especialmente diseñados para este tipo de módulos ubicados sobre la placa madre. En las primeras PC se usaban SIMM de 32 pines que proporcionaban cada uno 8 bits, por lo que debían ser usadas en pares en las PC de 16 bits (hasta 386SX) y en grupos de a cuatro en las de 32 bits (4 x 8 = 32 bits), pero con las 486 desaparecieron, en favor de los módulos de 72. • Memoria DIM(Dual In line Memory Module) Tienen 168 pines y en las Pentium se pueden usar de solos porque tienen 32 bits. Es posible combinar módulos SIMM y DIMM en una placa madre, pero bajo ciertas condiciones especiales. Un par de SIMM de 72 pines iguales (es decir de 8, 16 o 32 MB) deberán estar instalados en la ranura (slot) 2 y un DIMM de la misma velocidad en su ranura respectiva, además el voltaje deberá ser de 3.3 V y no 5 V como se usa normalmente en los SIMM. ROM (Read Only Memory, memoria sólo de lectura): Es una memoria no volátil, porque el computador puede leer información de ella pero nunca escribir información nueva. Todas las computadoras cuentan con dispositivos de ROM que contienen las instrucciones de arranque y otra información crítica. La información en la ROM se graba permanentemente cuando nace el computador, pero no hay manera de reemplazarla a menos que se reemplace el chip de ROM.



Memoria PROM (Programmable read only memory, memoria de sólo lectura programable)

Es la ROM en la que el usuario puede cargar programas y datos de solo lectura que una vez cargados rara vez o nunca se cambian.

Memoria EPROM

Es la ROM que se puede borrar mediante luz. Eléctricamente programable pero no eléctricamente borrable. Podríamos decir que es de una sola grabación como la PROM.

Memoria EEPROM

Es la ROM eléctricamente programable y eléctricamente borrable. Se puede regrabar infinitamente. Es como la FLASH.

Memoria FLASH

Es un tipo de PROM que el usuario puede regrabar y alterar fácilmente a su criterio.

Memoria CACHÉ

Se usa para facilitar una transferencia aún más rápida de instrucciones y datos al procesador; es decir que se usa para mejorar el caudal de proceso (velocidad con que un sistema de computación puede realizar el trabajo). Al igual que la RAM, el caché es un área de almacenamiento de alta velocidad para las instrucciones de los programas y los datos, pero es 10 veces más rápida que la RAM y mucho más cara. Con sólo una fracción de la capacidad de la RAM, la memoria caché sólo contiene las instrucciones y los datos que es probable que el procesador requiera enseguida.

9. SLOTS/BUSES

Los distintos dispositivos electrónicos de la placa base, así como las tarjetas controladoras (tarjeta gráfica, módem, etc) se comunican a través de los buses, que son una serie de hilos que permiten conectar uno o más componentes entre sí. Se puede decir que los slots o ranuras de expansión son el final de los buses, es decir, donde se conectan las tarjetas. En la actualidad, existen varios tipos fundamentales de buses, que son los que se usan en las placas base que podemos encontrar en el mercado. Son el ISA (cada vez más desfasado), el PCI (marca la pauta del mercado), el USB (el más nuevo y rápido) y el AGP (para gráficos).

Bus ISA

Apareció en el mercado hace bastante tiempo, y tiene un bus de datos de 16 bits, aunque es compatible con su antecesor de 8 bits, con la única diferencia de que el bus ISA de 8 bits era síncrono, por lo tanto, las viejas tarjetas de 8 bits pueden funcionar en buses ISA de 16 bits sin ningún problema. De todas formas, las tarjetas de 16 bits son considerablemente más rápidas que las otras, ya que transfieren la misma cantidad de datos que las de 8 bits, pero en la mitad de tiempo. Además de ampliarse el bus de datos de 8 bits a 16 bits también se amplió el bus de direcciones a 24 bits y se aumentó la velocidad de cada una de las señales de frecuencia. Este bus tiene 62 contactos (8 bits) o 98 contactos (16 bits).
Bus VESA
Es un bus desarrollado por un organismo de estandarización de dispositivos de vídeo quién lo presentó como el primer tipo de bus local. Se le llamo VESA LOCAL BUS (VLB). Este tipo de bus revolucionó el mercado ya que permitía una velocidad de 33 Mhz pudiéndose alcanzar una máxima de 50 Mhz y su ancho de banda es de 32 bits (aunque en su especificación 2.0 se alcanzan los 64 bits). En el año 1992 se presentó un nuevo bus local el PCI, que aunque no mejoró el rendimiento del VLB, superó las carencias que presentaba este bus que estaba orientado al diseño de los procesadores 80486.

Bus PCI (Peripheral Component Interconnect)
Es un bus que fue desarrollado por Intel y que fue creado especialmente para el procesador Pentium, además, es compatible con el estándar Plug&Play y tiene una anchura de bus de 64 bits. Este bus es independiente de la CPU, ya que depende de un controlador de bus PCI. Por ello es posible instalarlo en sistemas que no estén basados en el procesador Intel (AMD, Macintosh, etc). Las tarjetas de expansión PCI trabajan eficientemente en todos los sistemas, por lo que pueden ser intercambiadas a gusto del usuario. A pesar de que el bus PCI es el “presente”, por llamarlo de alguna manera, sigue habiendo buses y tarjetas de expansión ISA, ya que no todas las tarjetas necesitan los ratios de transferencia que ofrece PCI; sin embargo, las tarjetas SCSI, tarjetas de red, módems internos, etc. se han decantado cada vez más fuertemente hacia el bus PCI. Este bus consta de 124 contactos (32 bits) o de 188 contactos (64 bits).

Bus AGP (Accelerated Graphics Port)

La tecnología AGP, creada por Intel, y de reciente aparición, tiene como objetivo fundamental el nacimiento de un nuevo tipo de PC, en el que se preste especial atención a dos facetas: gráficos y conectividad. La especificación AGP se basa en la PCI 2.1 de 66 MHz, y añade tres características nuevas a ésta para incrementar su rendimiento: nueva tecnología de lectura / escritura, demultiplexado de datos y direcciones en el propio bus e incremento de la velocidad hasta los 100 MHz (lo que supondría unos ratios de transferencia de unos 800 Mb/s, 4 veces mayores que los alcanzados por PCI). Además, como el bus AGP es exclusivo para el apartado gráfico, no tiene que compartir su ancho de banda con otros componentes, como sí sucede en el caso del PCI.

10.PUERTOS

Los puertos son la relación del ordenador con el exterior, se encargan de facilitar el intercambio de información entre el ordenador y la periferia. Su función consiste en posibilitar la transmisión de datos entre dos sistemas distintos. Los puertos los podemos tener ya integrados en la placa base como ya vienen actualmente, pero en las placas ase anteriores a Pentium o los últimos 486, no venían integrados en la placa base.

Los puertos serie COM1 y COM2

Permiten velocidades de hasta 115.200 bits/s. El uso más común del puerto serie es el ratón o el módem, la razón de esto es porque un puerto serie no es un modo eficiente de transmitir, ya que la información la envía en serie, un bit de información tras de otro, este tipo de transferencia tan lenta está bien para dispositivos de baja velocidad hasta los 115.200 bits/s. El ordenador dispone de dos puertos serie, uno de 9 pines (COM1) y otro de 25 pines (COM2) en el caso de placas AT, y dos COM1 en el caso de placas ATX, que salen al exterior a través de un conector de 9 y 25 pines respectivamente.

Puerto Paralelo LPT

Puede enviar hasta 8 bits de información en paralelo simultáneamente. Las placas base o en el caso de tarjetas controladoras suelen llevar un puerto paralelo, que es un conector hembra de 25 agujeros, donde pueden alcanzarse velocidades de transmisión de hasta 500 KB por segundo.

Puerto USB (bus serie universal)

Es un bus de cuatro hilos y puede trasmitir/recibir a velocidades de hasta 12 Mbits/s y sus características más relevantes son: • Velocidades de hasta 1´5 Mbps y hasta 12 Mbps. • Se pueden conectar hasta 127 dispositivos. • Cada segmento de cable puede tener hasta 5 metros. • Utiliza un cable de 4 hilos: dos de alimentación y dos de señal. • Se utiliza para dispositivos de baja velocidad: teclado, ratón, impresora y módem. • Son completamente Plug&Play, en el caso de Windows 98 no es necesario reiniciar el equipo, solo hay que conectarlo y reconoce el dispositivo. • Existen dispositivos HUB para conectar varios USB a una salida.

El puerto IRDA

Se definió en 1994, para conectar un periférico de infrarrojos basta en colocarlo en línea con el puerto IRDA a una distancia menor a un metro, así se comunicarán los equipos sin necesidad de cables. La velocidad máxima es de unos 4 MB/s bidireccional, aunque emula a un puerto serie teniendo una velocidad de 115.200 bits/s.


11.DISCO DURO

Los discos duros constituyen la unidad de almacenamiento principal del ordenador, donde se almacenan permanentemente una gran cantidad de datos y programas. Constituyen la memoria de almacenamiento masivo. Esta información que almacena no puede ser procesada directamente por el microprocesador sino que, en un paso previo, deben transferirse a la memoria centrar (RAM) donde pueden manejarse. Las unidades de los discos duros contienen 2 o más discos (platillos) apilados sobre un eje central y aislados completamente del exterior. Las primeras y antiguas unidades almacenaban del orden de 10 a 20 MB y las actuales pues cada vez aumentan más pero no bajan de los 4 GB. Todo disco duro esta compuesto por uno o varios discos magnéticos (también llamados platos magnéticos), una o varias cabezas lectoras/grabadoras, un motor de giro y una circuitería interna que manipula estos elementos. Suponiendo que los discos duros solamente tuviesen un solo disco magnético y dos cabezas, su funcionamiento sería similar al de un disquete. Al encender el equipo, la corriente de 12 voltios que le suministra la fuente de alimentación del PC hace girar el motor de giro del plato magnético y posiciona las cabezas justo al principio de éste. Es básicamente igual que cuando colocamos un disco en el tocadiscos de la cadena de música y colocamos la aguja en el comienzo de su superficie. En el momento en el que el PC necesitar realizar cualquier operación de lectura o escritura, envía la orden a la circuitería del disco duro, la cual mueve las cabezas al lugar exacto donde se encuentra la información a recuperar o, en caso de tener que grabar algo, mueve las cabezas al lugar del disco duro donde hay espacio libre disponible.

12. TIPOS DE PLACAS

A continuación se describen los tipos de placas más usuales. XT (8.5 × 11" ó 216 × 279 mm) AT (12 × 11"–13" ó 305 × 279–330 mm) Baby-AT (8.5" × 10"–13" ó 216 mm × 254-330 mm) ATX (Intel 1996; 12" × 9.6" ó 305 mm × 244 mm) EATX (12" × 13" ó 305mm × 330 mm) Mini-ATX (11.2" × 8.2" ó 284 mm × 208 mm) microATX (1996; 9.6" × 9.6" ó 244 mm × 244 mm) LPX (9" × 11"–13" ó 229 mm × 279–330 mm) Mini-LPX (8"–9" × 10"–11" ó 203–229 mm × 254–279 mm) NLX (Intel 1999; 8"–9" × 10"-13.6" ó 203–229 mm × 254–345 mm) FlexATX (Intel 1999; 9.6" × 9.6" ó 244 × 244 mm max.) Mini-ITX (VIA Technologies 2003; 6.7" × 6.7" ó 170 mm × 170 mm max.; 100W max.) Nano-ITX (VIA Technologies 2004; 120 mm × 120 mm max.) BTX (Intel 2004; 12.8" × 10.5" ó 325 mm × 267 mm max.) MicroBTX (Intel 2004; 10.4" × 10.5" ó 264 mm × 267 mm max.) PicoBTX (Intel 2004; 8.0" × 10.5" ó 203 mm × 267 mm max.) WTX (Intel 1998; 14" × 16.75" ó 355.6 mm × 425.4 mm) ETX y PC/104, utilizados en sistemas embebidos.

No hay comentarios: